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INTRODUCTION
One of the most significant.changes in theoretical computer science |
has been the recent infusion of the methods and problems frocm combinatorial
analysis. Among the most powerful combinatorial theorems which have been !
imported to computer science are those of extremal graph theory [1]: in
extremal graph theory, one is interested in the largest (or in complementary
problems, the smallest) graph which avoids (or contains) a given structure.
Purely combinatorial results (which have significance, e.g., for the design
of circuit boards) have been obtained by Chung and Graham [2] and by Chung,
Graham, and Pippenger [3]. In this paper, we extend this theory to
encompass results concerning data structures.
As motivation for the results to the described, note that many of the

large data structures manipulated by the programs described in [4,5] have

two characteristics
(i) they are sequentially accessed, and

(ii) many distinct structures convolve in the
same physical memory.

For applications of this sort, it would obviously be desirable to have

available a universal data structure in which all data structures from a

given class may gracefully reside. In view of (i), by "graceful" we mean
that the sequential accessing characteristics of the embedded data structures
‘ are not too drastically altered. Let us measure such alterations by the

# dilation of logical adjacencies [6,7] needed to embed all structures from a

given class into a universal structure; this is then a complementary

what is the size (number of edges) of the

extremal graph theory problem:

smallest universal graph for a given dilation factor
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The main results contained in this paper address such problems from
a number of points of view.

(1) We give several asymptofically optimal universal data
structures for graphs of n vertices when average dilation
[7]) is used as a measure.

(2) We discuss a universal data structure for graphs of n
vertices where worst-case dilation is used as a measure [6].

(3) We consider variations of the average dilation measure
which gives favorable comparisons between data structures
studied in [6,7].

(4) We consider the kinds of "sharing' that can take place
between "almost linear" and "almost complete tree-like'
structures.

(5) Finally, we propose a data structure embedding model which
recovers some aspects of random accessing of data items,
and prove a space-time tradeoff which seems to indicate
that no savings is possible in RAM models which assess
accessings costs uniformly ([8].

PRELIMINARIES

A graph, G, is defined by its vertices, V(G), and edges,
E(G) c V(G) x V(G). Edges are assumed to be undirected: a pair of vertices
X,y are connected if either (x,y) € E(G) or (y,x) € E(G). A path between

Xys X is said to be of length n. The distance metric dG(xO, xn) is defined

0
to be n if there is no shorter path than Xy eoesX o

A graph represents a data structure in the obvious way: vertices
represent nodes or records and connectedness models logical adjacency.
The following relations and their significance for data structures can be
found in [6,7]. Let G, G* be graphs. We say that G is T-worst case
embeddable in G* (GﬁTG*) if there is a one-one 9:V(G)*V(G*) such that (x,y)
€ E(G) implies

Aoy (8(x), ®(y)) < T. (1)

2

= o



Similarly, G is A-average case embeddable in G* (G shaxg G*) if there

is a one-one $ as above such that

z 4oy (2(x), 2(y)) < A |EQ)]. (2)

X,y
connected

In [4,5], comparisons between several natural classes of graphs give
asymptotic bounds on T, A in (1), (2) as functions of |V(G)|. Shortly
after the announcement of the results of [6], R. M. Karp suggested to us
the following class of problems connected with extremal graph theory:
what are the characteristics of ST - universal data structures; i.e.,
those structures which T-worst case embed all graphs in a given class.

This paper grew out of considering these problems.

UNIVERSAL GRAPHS
Let cn be a given class of graphs G, |V(G)| = n. Let us ask about a

data structure which is <

Sp or < axg universal for . In particular, let

us define
w(z", T = min {|E@)]: 6" e ", 6" <, G} (3)
and

a(z", &) = mn {|E(®)|:¢" € ¢, ¢" < %[B cl}.

For T = 1, (3) becomes the complementary extremal graph problem studied
in [2,3].

By an n-tree G, we mean a comnected acyclic graph G, with |V(G)| = n.
It is also convenient to think of trees as rooted in the following sense:
accompanying G, there is an ancestor-descendent relation that assigns
direct ancestors and direct descendents to vertices in the obvious way so

that a vertex with no ancestors can be designated as the root of the tree.

3

4 W “!{;&‘“W TR TRy o0 T AR TR R s = 0>
R T L g : W ' -

i eyt b
S -,,&




(Obviously this choice is not going to be unique, but we assume that G
is not characterized until such a choice is made). A d-ary n-~tree is an
n~tree in which each vertex has at most d direct descendents. We denote,
respectively, the classes of n-trees and d-ary n-trees by ™ and Pt: .
n1+k(n)

By [2] it is known that #n log n < w(Fn, 1) < , k(n) =

[log log n]_l. T
The upper bound was improved in [3] to

wi™. 25 '= 0¢a Toa allog Log ni™y

The bounds on a(Fn, 1) are apparently not elsewhere considered.
Superficially, at least, all interest in further characterization of
(3) is destroyed by the following obvious
Theorem. For T > 2
w(™, ) =n
Of course, in (3), the "target" graph G may have unbounded degree.
Therefore, it is natural to consider w(cn. T, S) and a(;n, T, S) where in

both cases the target graph G is restricted to be in' the set S. Note that

now the theorem just cited is no longer obviously true.

* Thus rg = binary trees on n vertices.
+ 1In the sequel, we use log x for 1032x and nx for logex.




The best that is known is the upper bound of [3] (S = all cubic

graphs)
w(™®, 1, §) iz—’:—-Texp (log?n/2 log 2) . (%)

It is not obvious that when (i) "targets'" are restricted to binary trees
and (ii) w(Fg, T, Fg) is considered, that it is possible to do any better
than the union of all trees in F;, giving a structure of size 4n/2nn'
But, we have the following
Theorem. For each T > 1, there is a binary tree H, such that G ZT H
for all G € I}, and

2
fn'n |
tnle@| < o 5

or in other words

n n 1 2 2
w(FZ, T, PZ) exp 7= (2n n)° + 0((2n n)°) .
A key step in the proof of this theorem hinges on the solution to

the fascinating "almost linear" recurrence
% * Yhag ¥ u[h ’ (3
A

first considered by Knuth [9]. This also establishes a connection

between the theorem and ineq. (4): un is also the number of partitions

of 2n of the form Zai 21, Q

g 0, 1. Knuth [9] bounds the partition

function

Pm) = —L— exp (13 m .
4/ 3m




i s e e e =

There are two possibilities for improving the bounds in w(Fg, T, P;).
The first possibility is to introduce circuits to the target graph of the
previous theorem, but this does not appear to give an asymptotically
better bound than (4). The second possibility is to prove that balanced

trees and unbalanced trees are < _ -~ equivalent. This seems unlikely since

T
combining such a result with the proof method of the previous theorem
gives a polynomial sized universal tree. However, in trying to imprnve
the bounds on w(F;, T F;) it may be desirable to ignore irregular trees,
letting only very balanced or very unbalanced trees reside in the same
universal data structure.

In any case, it seems unlikely that polynomial structures are possible.
We are, however, far from proving this; indeed, the best known lower bound
is the following
Theorem, For alln > N

w(F;, T, Pg) > ¢c(T) n logn ,

where c(T) > 0 is a constant for fixed T > 1.

Certain other subcases are also of interest. Erdos, Chung, and Graham+,
consider w(S,1) and obtain
2

4
w(S,1) <iTmoe

The following theorem is an improvement, but is sirely not the best
possible bound.

Theorem

w(s,1) <o’

+ Private Communication.




A non-trivial lower bound would clearly be desirable. Another class of *
interest are graphs of high genus.++ We conjecture that for graphs of
fixed genus Yy, it is possible to do better than the naive (;) bound
obtained by embedding in the complete graph.

Our next series of results show impressive improvements by passing
to average dilations. We now get optimal constructions, even in a variety
of limited settings.

We have, for instance, the

Theorem. For o > 0,

n 1
2° o

Since there is a linear lower bound on a(*,°*,°), this construction is

a(T log(2+a)) 3

S) = 0(n
optimal. By a slight modification of the construction, this gives

a(Fn, A, S) = 0(n), for all A > 1, but this result may be superceeded by
the following

Theorem. For each A > 1, there is a binary tree H, such that

c<®®y

‘ for all G € I), and '
[E@)| = o) ;
or, in other words

a(l"n

T
27 A, I'Z) = 0(n) .

++ A graph is of genus y if it can be embedded in a sphere with Y
handles [10]. i




These results are related to the ability to "cut" graphs in
advantageous ways. For example, a generalization of the planar separator
theorem [11] to graphs of high genus, obtained by Lipton and Tarjan, gives
us the following
Theorem. Let L$ be the class of graphs G with genus Yy and |V(G)| = n.

Then, for all n > N,
n

101 )
a(LY, A, T2) < c(A)*n ,

where c(A) does not denmend on n.

EXTENDED MODEL

In comparing classes of data structures (see, e.g., [6,7], the measures
of "efficiency" have implicitly assumed that only sequential accessing is
important. Thus, when in [6], we bound the efficiency, T, of an embedding
of n X n array into binary trees by

T>clogn,

the function T(n) captures the dilation factor in an embedding. We now
describe a generalization of this concept which recovers a certain kiad of
random accessing. Since the precise definitions are quite complex, we will
settle for a less exact -- but more picturesque -- rendering. Let us assume
that we have in front of us an illustration of a graph G, and also a number
of friends who agree to lend us their forefingers for use in tracing the
paths of the graph. Our friends oblige us as follows: We may start

traversing at any vertex already visited. The traversal rule is, then,

that we must elther traverse graph edges or "jump" to a vertex pointed to
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by a friend. The time required to traverse a sequence of vertices is then
simply the number of applications of traversal rules. Notice that the

result of a traversal is not necessarily a path of G. The connection

between fingers and random accessing is that traversals requiring k-fingers
also require k-"addresses'" for the vertices pointed to.

We then say that G < G* if there is a one-one 9:V(G) » V(G*), so

k,T
that for every x,y € V(G) with dG(x,y) = m, there is a k~finger traversal L

from ®(x) = x* to ®(y) = y* with time at most A, and A f_TdG*(x*, y*) .

AP R————

We have the following

{ Theorem. If Gn is the n X n array [7], H is a binary tree i
and ]
<
Gn — k,T(n) B
then 4

k+ T(n) > c logn ,

where ¢ is a constant independent of n.

; OTHER TYPES OF AVERAGE EMBEDDING 4
{ The relation f_an may be thought of as averaging - with relative
frequencies uniformly distributed to the edges E(G) - over the edges of G.
We now make a more global definition which may be used to recover our

intuitions about path lengths in binary trees [7]. We will essentially

average our shortest paths:

G < P38 Gk 4f there 1s an embedding :V(G) + V(G*) such that
A

ch* (Q(A’ ‘D(Y)) _<_A' ch (x,Y) .

o(x), o(y) X,y




We then have the following

Theorem, For each n > 0, let An be the least real number such that

Gn < paths H
A

for a binary tree H. Then
st o
Thus, we see that if the average embedding is required to work well on

all shortest paths, then the embedding cost goes to zero. In a sense,

then < e "charges" more heavily than < pathE for any bottlenecks.
A A
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